CONFIGURATION OF THE GFDL FV DYNAMICAL CORE

Lucas Harris GFDL AM3 Summer School 17 July 2012

```
&fv core nml
   layout = $fv layout
   io layout = $fv io layout
  npx = 49,
  npy = 49,
ntiles = 6,
npz = 48,
  n split = 8,
   a2b \text{ ord} = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
   fill = .true.
   print freq = 0,
   grid type = 0,
   old divg damp = .true.,
   nord = 0,
   dddmp = 0.0,
   d2 bg = 0.0075,
   d4 bg = 0.00,
   tau = 0.
&coupler nml
   dt atmos = 1200
```

Discussed by computing services

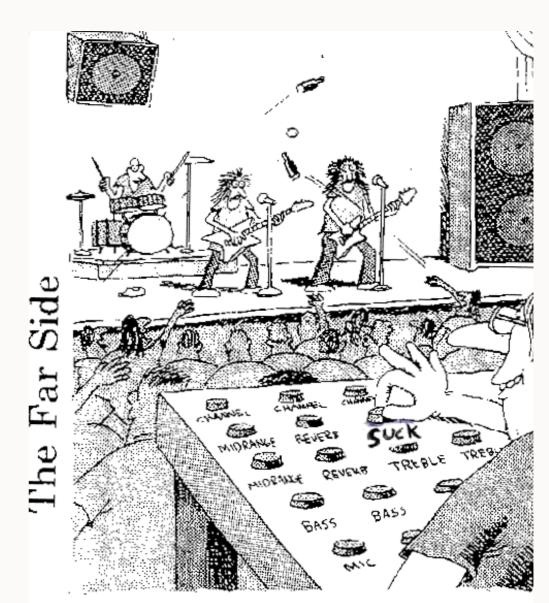
Model resolution

Time step

Damping

Dynamics

Diagnostics


Grid options

NAMELIST DEFAULTS

- A options which is not specified in fv_core_nml is assigned a default value (see fv_arrays.F90 or fv_control.F90 for more information)
 - Some options must be specified:
 - npx, npy, npz
 - ntiles = 6
 - layout

WARNING

- If you don't know what an option does, don't mess with it
- Unfortunately no
 do_what_I_want
 = .true.option

Raymond's last day as the band's sound technician.

```
&fv core nml
   layout = $fv layout
   io layout = $fv io layout
   npx = 49,
  npy = 49,
ntiles = 6,
npz = 48,
n_split = 8,
   a2b ord = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
   fill = .true.
   print freq = 0,
   grid type = 0,
   old divg damp = .true.,
   nord = 0,
   dddmp = 0.0,
  d2 bg = 0.0075,
   d4 bg = 0.00,
  tau = 0.
&coupler nml
  dt atmos = 1200
```

Discussed by computing services

Model resolution

Time step

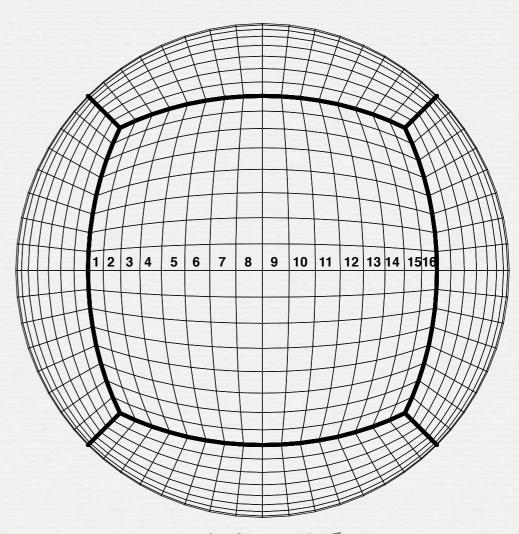
Damping


Dynamics

Diagnostics

Grid options

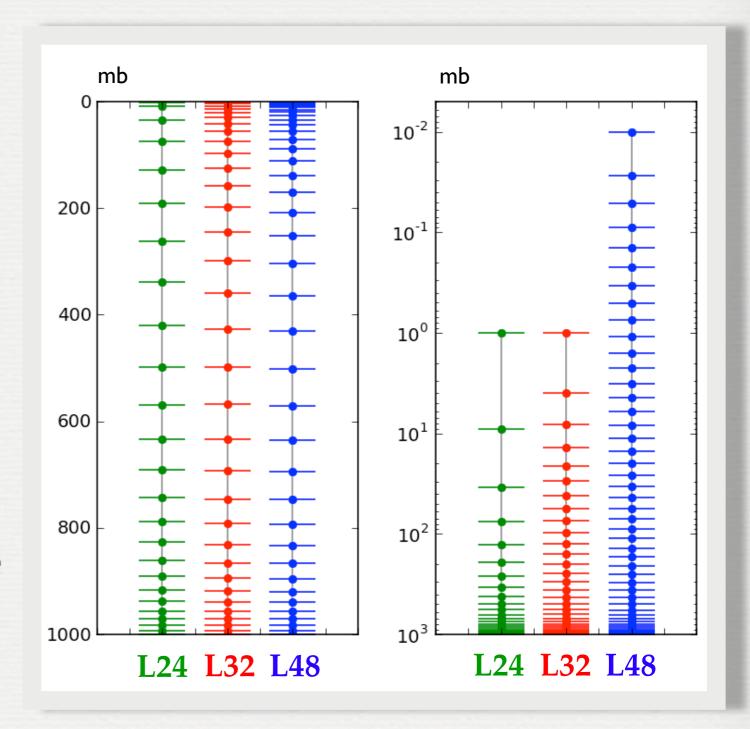
MODEL RESOLUTION


- npx, npy: number of grid
 corners across a cube face
- npx-1 grid cells across a cube face
- npx and npy must be the same
- npx-1 and npy-1
 ideally divisible by
 layout

c16 grid npx = npy = 17

MODEL RESOLUTION

- Average cell width of a cN grid is roughly 10000 km / N
 - $= 2\pi R = 40000 \text{ km}$
 - 4 faces around circle
- Ratio between max and min cell width is √2 ≈1.41


c16 grid $\Delta x \approx 625 \text{ km}$ 500 to 750 km

MODEL RESOLUTION

Grid	Avg. Δx	Equiv. ΔΦ
c16	625 km	5.5°
c48	210 km	2°
c90	110 km	1°
c180	55 km	0.5°
c360	25 km	0.25°
c720	12 km	0.125°
c2560	4 km	0.35° (2')

VERTICAL RESOLUTION

- npz: number of vertical layers
 - **AM2: 24**
 - **AM3: 48**
 - HiRAM: 32
- Layer thicknesses are pre-defined for each npz

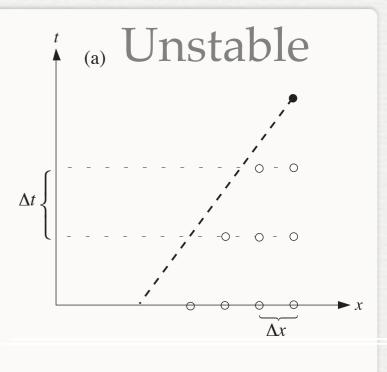

```
&fv core nml
   layout = $fv layout
   io_layout = $fv_io_layout
  npx = 49,
  npy = 49,
  ntiles = 6,
  npz = 48,
n_split = 8,
  a2b \text{ ord} = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
  fill = .true.
  print freq = 0,
   grid type = 0,
   old divg damp = .true.,
  nord = 0,
  dddmp = 0.0,
  d2 bg = 0.0075,
  d4 bg = 0.00,
  tau = 0.
&coupler nml
   dt atmos = 1200
```

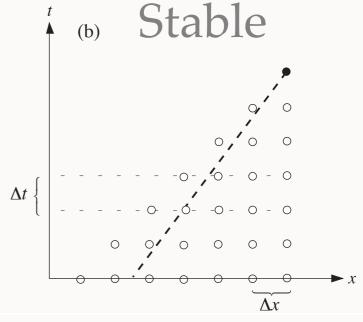
Discussed by computing services

Model resolution

Time step

Damping


Dynamics


Diagnostics

Grid options

TIMESTEPS AND THE CFL RESTRICTION

- Courant number: $C = U\Delta t/\Delta x$
- Courant-Friedrichs-Lewy condition: stable only if signals in the exact PDE do not leave the numerical domain of dependence
- For the hydrostatic FV Core C < 1 is required

Durran, 2009

TIME STEPPING IN THE FV CORE

- dt_atmos: physics timestep (except radiation)
- k_split: number of vertical remappings per physics timestep
 - Usually 1 (default) or 2
- n_split: number of dynamical timesteps per k_split step
 - $\Delta t = dt_atmos/(k_split*n_split)$

CHOOSING YOUR TIMESTEP: N_SPLIT

- $= n_split = dt_atmos/(\Delta t^*k_split)$
- Ideally: $\text{n_split} = \left[\text{dt_atmos*} U_{\text{max}} / \left(\Delta x_{\text{min}} * \text{k_split} \right) \right]$
 - However...nonlinearity and gravity wave propagation require a smaller Courant number
 - U_{max} can be quite large in the stratosphere!

A BEST FIRST GUESS

- Set n_split = 0 to get an automatic guess from the model
 - Look in stdout for the selected n_split
- May need to tweak value anyway
 - If your model crashes, try increasing n_split first (instead of decreasing dt_atmos)

EXAMPLE #1: C48

- $\Delta x_{avg} = 210 \text{ km}$
- If dt_atmos = 1200 s and k_split = 1 (default):

```
starting 1 OpenMP threads per MPI-task
For k_split (remapping) = 1
n_split is set to 05 for resolution-dt=0049x0049x6- 1200.000
Using n_sponge : 00
Using non_ortho : T
Starting PEs : 96
Starting Threads : 1
```

- $\Delta t = 1200 \text{ s} / 1 / 5 = 240 \text{ s}$
- $C \approx 200 \text{ m/s} * 240 \text{ s} / (210 \text{ km} * 0.8) \approx 0.29$

EXAMPLE #2: C720

- $\Delta x_{avg} = 12 \text{ km}$
- If $dt_atmos = 300 s$ and $k_split = 2$:

```
starting 1 OpenMP threads per MPI-task
For k_split (remapping) = 2
n_split is set to 09 for resolution-dt=0721x0721x6- 300.000
Using n_sponge: 00
Using non_ortho: T
Starting PEs: 96
Starting Threads: 1
```

- $\Delta t = 300 \text{ s} / 2 / 9 = 17 \text{ s}$
- $C \approx 200 \text{ m/s} * 17 \text{ s} / (12 \text{ km} * 0.8) \approx 0.35$

TRACER SUB-CYCLING

- Tracers are advanced after completing n_split
 dynamical timesteps using the accumulated air mass fluxes
- Since tracer advection is linear and depends only on the wind speed, the Courant number can be closer to 1.
- By default (q_split = 0) the model computes the number of split tracer timesteps automatically:
 - \blacksquare max $\{\sum_{n_{split}} C\} + 1$

```
&fv core nml
   layout = $fv layout
   io_layout = $fv_io_layout
  npx = 49,
  npy = 49,
ntiles = 6,
  npz = 48,
n_split = 8,
  a2b \text{ ord} = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
   fill = .true.
  print freq = 0,
   grid type = 0,
   old_divg damp = .true.,
  nord = 0,
  dddmp = 0.0,
  d2 bg = 0.0075,
  d4 bg = 0.00,
  tau = 0.
&coupler nml
  dt atmos = 1200
```

Discussed by computing services

Model resolution

Time step

Damping

Dynamics

Diagnostics

Grid options

DIVERGENCE DAMPING

- One of two means of noise control in FV Core
- nord: order of divergence damping
 - nord = $0: \nabla^2$ divergence damping
 - d2_bg: damping coefficient, default 0
 - nord = 1: ∇^4 divergence damping; more scale selective (default)
 - d4_bg: damping coefficient, default 0.16, maximum
 0.25

UPPER SPONGE LAYER

- Top two layers are wave-absorbing layers, implemented through additional divergence damping and diffusive lowerorder flux operators
 - old_divg_damp = .true.:From CMIP5 runs
 - n_sponge = 0: 2 layers with presets good for high-resolution simulations
 - (must have old_divg_damp = .false.)
 - n_sponge = 1:2 sponge layers (default)
 - n_sponge > 1: n_sponge + 1 sponge layers

OTHER DAMPING PARAMETERS

- tau: strength of Rayleigh friction applied near top boundary; 0 by default
- d_ext: barotropic ("external") mode damping; 0.02
 by default, maximum 0.25
- d_con: rate at which energy dissipated by divergence damping turned into heat, so as to better conserve energy. 0 by default; use at your own risk

```
&fv core nml
   layout = $fv layout
   io_layout = $fv_io_layout
   npx = 49,
  npy = 49, ntiles = 6,
  npz = 48,
n_split = 8,
  a2b \text{ ord} = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
   fill = .true.
   print freq = 0,
   grid type = 0,
   old divg damp = .true.,
   nord = 0,
   dddmp = 0.0,
   d2 bg = 0.0075,
   d4 bg = 0.00,
  tau = 0.
&coupler nml
  dt atmos = 1200
```

Discussed by computing services

Model resolution

Time step

Damping

Dynamics

Diagnostics

Grid options

TRACER FILLING

- Positive-definite Lin & Rood tracer advection produces tiny negatives (10-25 and smaller)
- Set fill = .true. when it absolutely, positively must be positive
 - Negative filling is done in the vertical to avoid possibly having to reach across process domains

CONDENSATE LOADING

- The FV core uses the microphysical tracers to explicitly compute condensate loading of nwat species
 - nwat = 3 by default, for three-phase AM3 microphysics
 - If using six-phase Lin microphysics set nwat = 6
 - Don't want loading? Set nwat = 0

DYNAMICS PARAMETERS

- beta: time-centering parameter for pressure-gradient force
 - 0 by default; 0.4 may improve solution of gravity waves in the tropics
- hord_tr: tracer advection scheme
 - 12 by default: monotone and positive-definite
 - 13: positive-definite only, faster

DYNAMICS PARAMETERS

- a2b_ord: order of interpolation of pressure to corners for PGF; 4 by default
- consv_te: amount to correct total energy lost in dynamics and vertical remapping
 - 0 by default; 0.7 in full-physics simulations

```
&fv core nml
   layout = $fv layout
   io_layout = $fv_io_layout
   npx = 49,
  npy = 49,
ntiles = 6,
  npz = 48,
n_split = 8,
   a2b \text{ ord} = 4,
   adjust dry mass = $adjust dry mass,
   consv te = 0.7,
   fill = .true.
   print freq = 0,
   grid type = 0,
   old divg damp = .true.,
   nord = 0,
   dddmp = 0.0,
  d2 bg = 0.0075,
   d4 bg = 0.00,
  tau = 0.
&coupler nml
  dt atmos = 1200
```

Discussed by computing services

Model resolution

Time step

Damping

Dynamics

Diagnostics

Grid options

PRINT_FREQ

```
ZS max =
PS max =
      1015.0000000000
                        min = 1004.82291130741
Mean specific humidity (mg/kg) above 75 mb= 9.99999999999999E-006
Total surface pressure (mb) = 1014.99347525107
mean dry surface pressure = 1010.06551436790
Total Water Vapor (kg/m**2) = 50.2853151343074
ENG Deficit (W/m**2) = 0.0000000E+00
UA max = 19.1862477411642
                        min =
                             -19.5545697489168
VA max = 19.6695572008257 min = -19.2094634974794
TA max = 301.987126680501 min = 201.007851200000
RH sf (%) max =  
             84.1964443194992 min =
RH 3D (%) max = 84.1964443194992
                             min =
                                  1.838996873108497E-006
PoTemp max = 1178.99543758473 min = 301.006081741117
```

- Hours between diagnostic printout
 - 0 (default) for no output
 - Set to -1 to get output every timestep

DEBUGGING OUTPUT

- fv_debug = .true. prints out max/min at beginning and end of every call to the FV core
- range_warn = .true. prints warnings if model
 variables exceed reasonable bounds

- Both are .false. by default
- Any diagnostic output will slow down the model

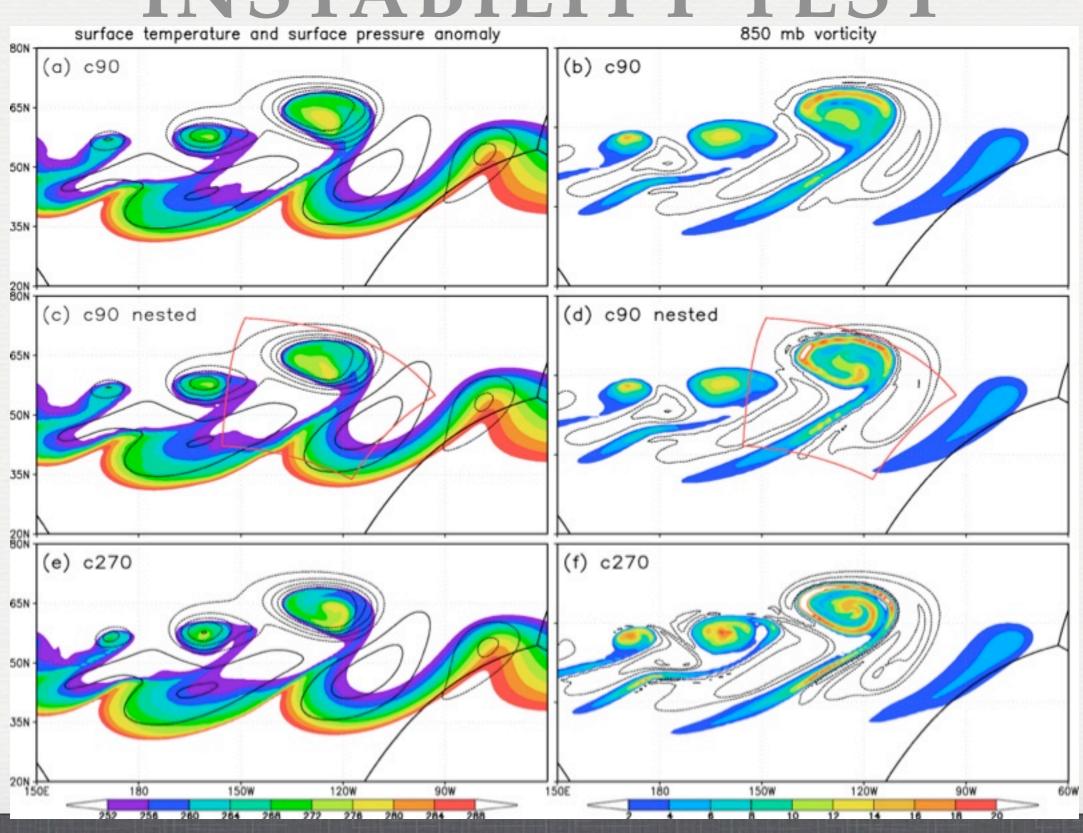
INITIAL CONDITIONS

- Set external_ic = .true. to use external lat-lon data source given in res_latlon_dynamics
 - When initializing the model, set adjust_dry_mass = .true. to add the mass of water vapor to the initial mass to account for condensate loading
 - Automatically set in most scripts

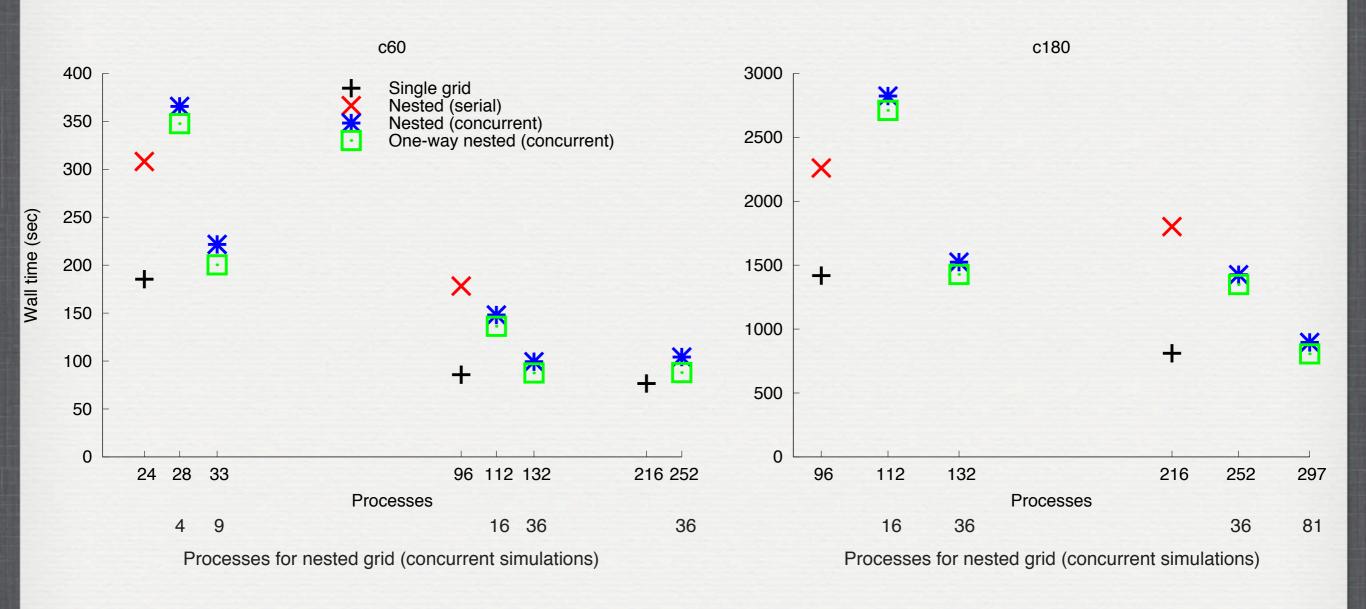
INITIAL CONDITIONS

- When external ic = .true.:
 - ncep_ic = .true. if using an NCEP or NCEPcompatible analysis or reanalysis
 - diag_ic = .true. if instead using a lat-lon FV
 core output file
 - Can also use res_latlon_tracers to initialize tracers with this option

BOUNDARY CONDITIONS

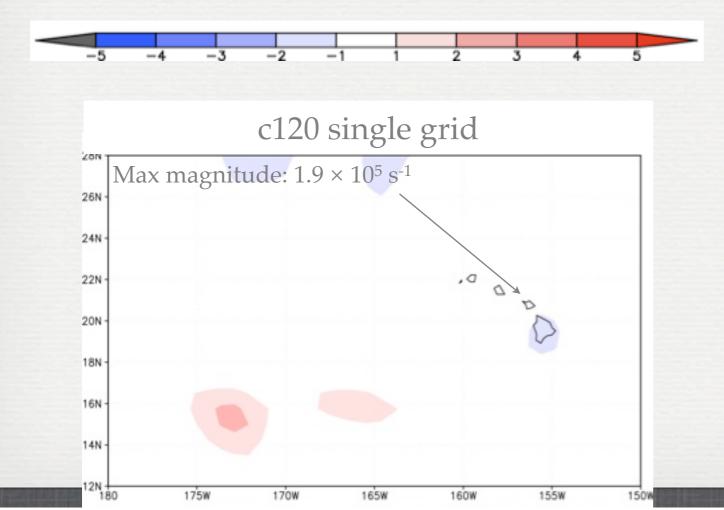

- Topography for FV core (and gravity wave drag) specified in surf_map_nml
- Specifying SSTs is done in ocean_model_nml and amip interp nml
- nudge = .true. uses input data in res_latlon_dynamics to nudge the solution to the analysis state

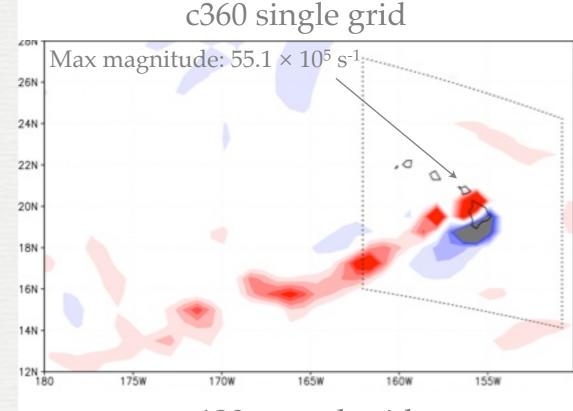
REFINED GRIDS: PRELIMINARY RESULTS

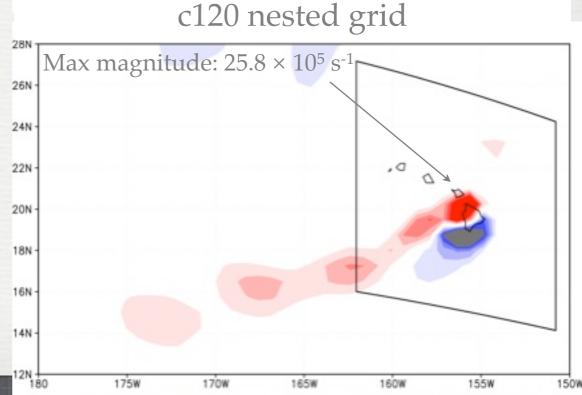

NESTED GRID

- Inserts a small, higher-resolution nested grid in global grid, with optional two-way feedback
 - Available in FV core
 - √ Flexible sizes, numbers
 - X Conservation is much harder
 - X Grid artifacts can be a problem

BAROCLINIC INSTABILITY TEST

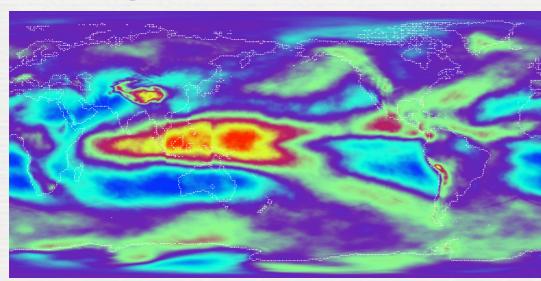

BC TEST: TIMING

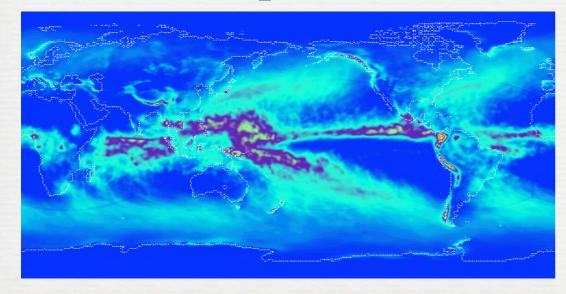



In an environment with many available processors, using additional processors for concurrent nesting can yield large efficiency gains!

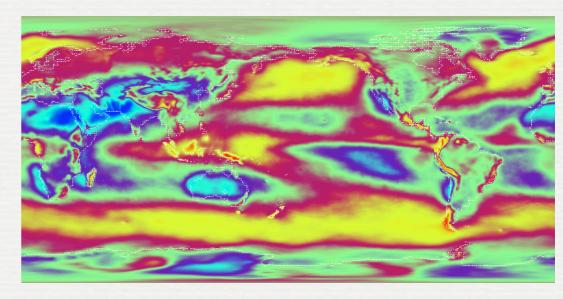
HAWAII LEE VORTICES

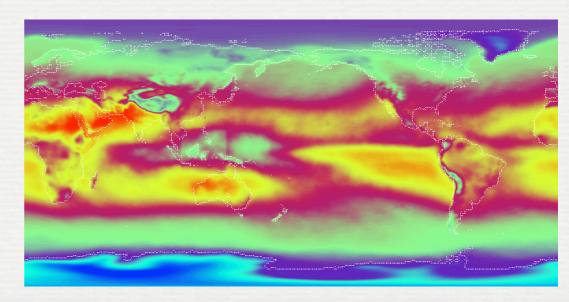
- 72 hr forecast from 1 Aug 2010
 00Z with real topography
- Showing Vorticity × 10⁵ s⁻¹, topping out at ±5



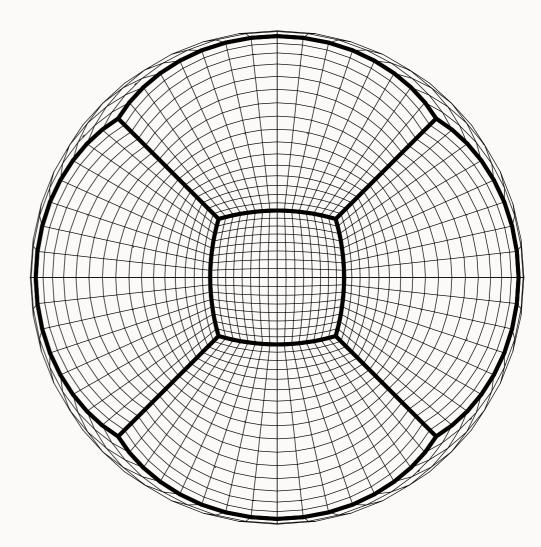

Monday, July 16, 2012

MARITIME CONTINENT C90 NESTED GRID


High cloud amount

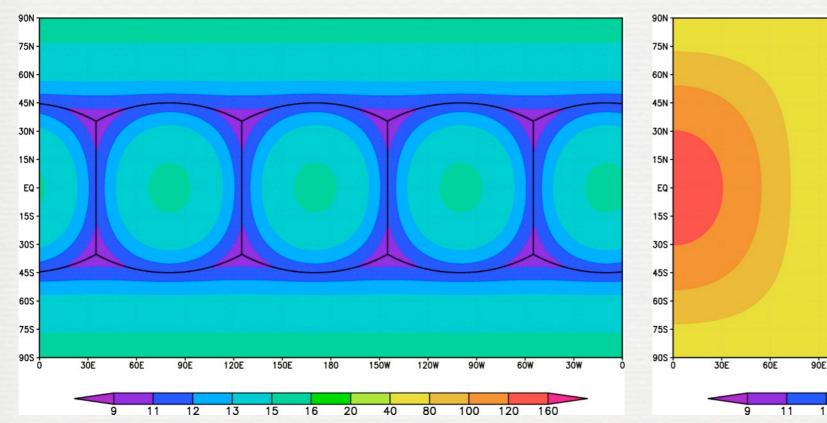

Precipitation

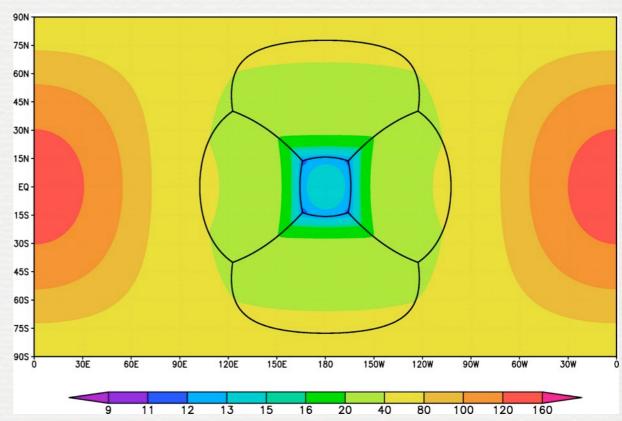
Total cloud amount



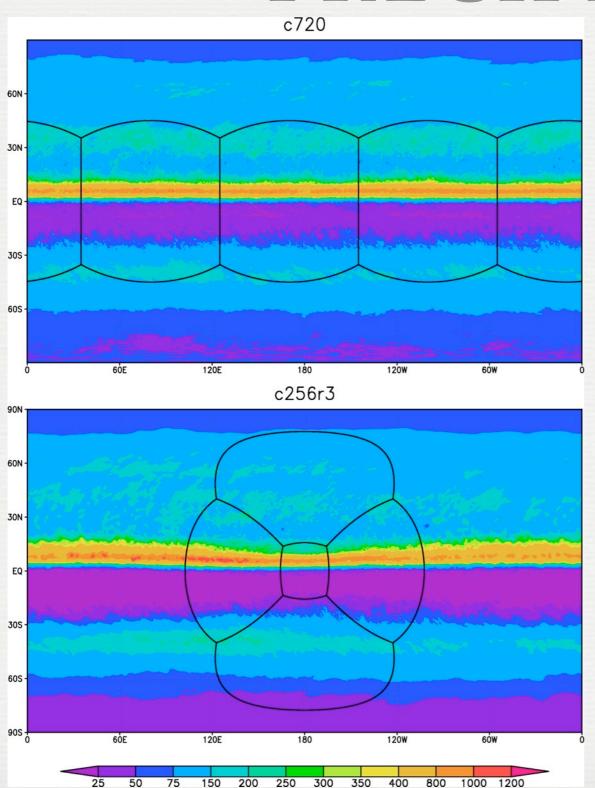
OLR

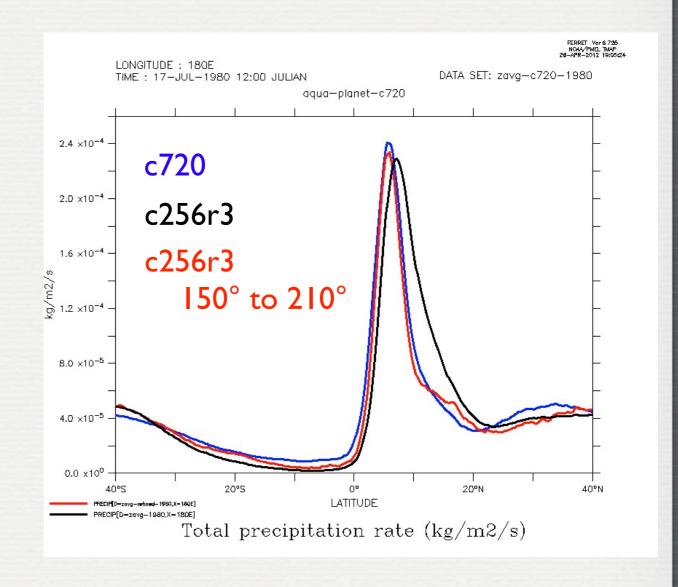
STRETCHED GRID

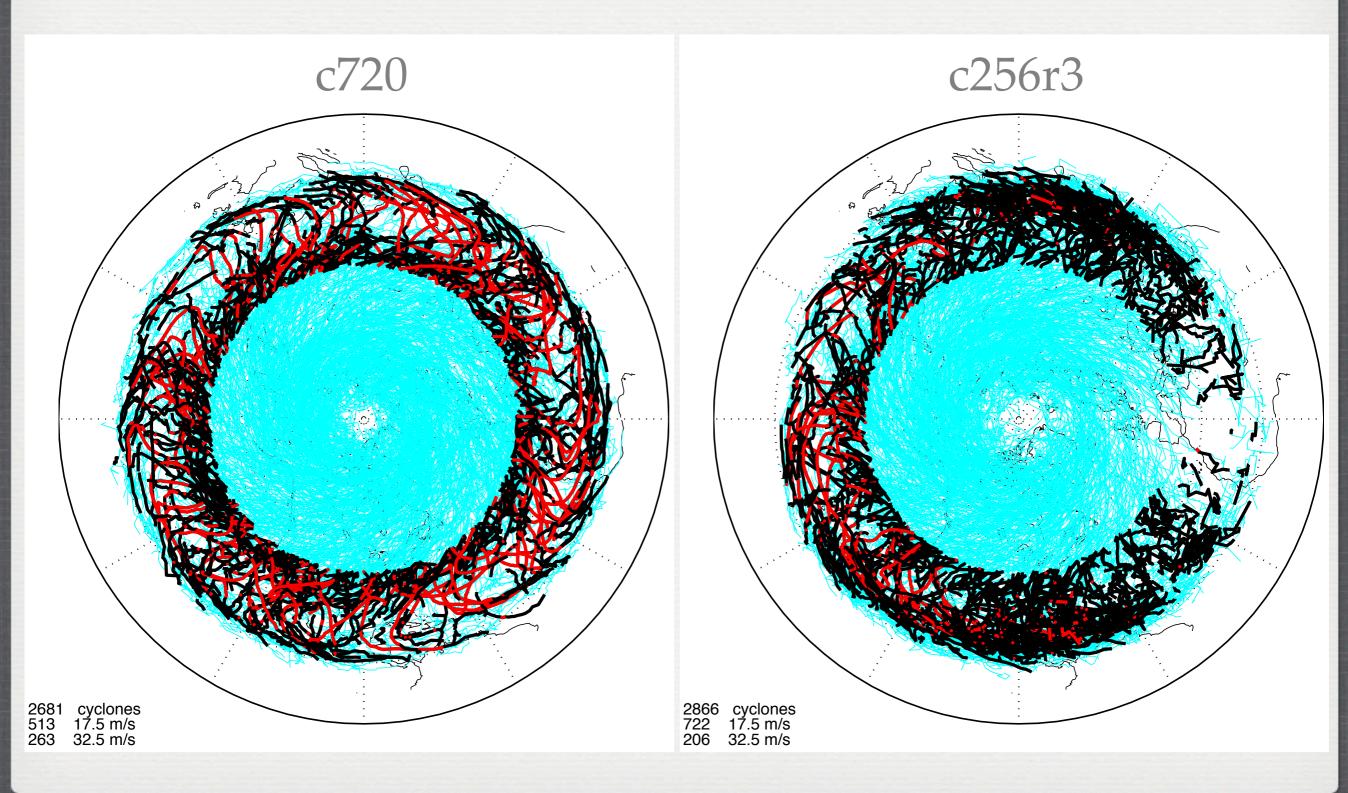

- Deforms cube into a truncated pyramid with one smaller face
 - Already in FV core
 - ✓ Slightly smoother than original cubed sphere
 - √ Automatically mass-conserving
 - X Can only refine in one spot
 - X Rest of solution degraded
 - X Timestep restricted everywhere by smallest cell



c16r3 $\Delta x_{avg} = 625 \text{ km}$


c256r3




	c720	c256r3
Δx avg	12.9 km	~ 40 km
Δx min	10.9 km	~ 13 km
Δx max	15.4 km	~ 117 km

AQUAPLANET: PRECIPITATION

AQUAPLANET: TROPICAL CYCLONES

